
Quadrans Blockchain
Yellow Paper - v1.0

Michele Battagliola∗, Andrea Flamini†

Riccardo Longo‡, Alessio Meneghetti§, Massimiliano Sala¶

November 16, 2021

Abstract

In this document we present the design of Quadrans, a blockchain
platform for supply chains and IOT devices, capable of performing trust-
worthy and transparent operations. We aim to achieve scalability with-
out losing security or decentralisation. Furthermore we use an innovative
approach to the cryptographic layer of the ledger that gives back con-
trol to users allowing great flexibility, achieving also resiliency in case of
disrupting cryptanalysis advancements. We also natively support Post-
Quantum algorithms and enforce their use in block signing, while support-
ing lightweight encryption for IOT devices. This paper has been revised
by Davide Costa1 and Fabio Fiori2 from Quadrans Foundation.

Contents

1 Introduction 2

2 Algorithms and Parameters Flexibility 3
2.1 Smart Contract Cryptographic Kernel 4
2.2 Encoding . 5

3 Users 5
3.1 Digital Signatures . 6

3.1.1 Available Digital Signature Algorithms 6
3.2 Addresses . 8

4 Nodes 8
4.1 MasterNodes . 8

4.1.1 SynchroNodes . 9
4.2 Miners . 9

∗michele.battagliola@unitn.it, Department of Mathematics, University of Trento
†andrea.flamini.1995@gmail.com, Department of Mathematics, University of Trento
‡riccardolongomath@gmail.com, Department of Mathematics, University of Trento
§almenegh@gmail.com, Department of Mathematics, University of Trento
¶maxsalacodes@gmail.com, Department of Mathematics, University of Trento; Crypto-

Board Quadrans Foundation
1Davide Costa, davide.costa@quadrans.io
2Fabio Fiori, fabio.fiori@quadrans.io

1

1 INTRODUCTION 2

5 Chain Structure 9
5.1 The SynchroChain . 10

5.1.1 SynchroBlocks . 10
5.1.2 EpochBlocks . 11

5.2 ShardChains . 13
5.2.1 ShardBlocks . 13
5.2.2 Transactions between shards 13

5.3 The MasterChain . 13
5.3.1 MasterBlocks . 14

6 Consensus 14
6.1 Definitions . 16

6.1.1 Blocks Finalization Assumptions 16
6.2 SynchroChain Consensus . 17

6.2.1 SynchroNodes Selection 17
6.2.2 SynchroBlock Creation and Certificates 18
6.2.3 EpochBlocks . 19

6.3 ShardChains Consensus . 20
6.3.1 Proof of Work for Miners in ShardChains 20
6.3.2 Enrollment Transaction and Shard Assignment 20
6.3.3 Simple Competition and Mining Competition 21
6.3.4 Crypto-Puzzle . 22
6.3.5 Solution Submission and Commitment 24
6.3.6 Time-Slot Claiming and Enrollment Refunds 26
6.3.7 ShardBlock Validity and Finality 27

6.4 MasterChain Consensus . 28
6.4.1 Proof of Stake for MasterNodes in the MasterChain . . . 28
6.4.2 MasterBlock Validity and Finality 30

7 Quadrans Tokens and Quadrans Coins 31
7.1 Quadrans Tokens . 31
7.2 Quadrans Coins . 31
7.3 Minting new QDCs . 31

8 Smart Contracts 32

9 Future Works 32
9.1 Developments on Addresses . 32

9.1.1 Authorised Keys . 33
9.1.2 Common Name . 33

1 Introduction

The potential of distributed smart contracts and of the blockchain (a public data
structure very resilient and openly auditable) has been apparent since the very
beginning [7, 11], and great interest has risen especially in particularly suitable
sectors such as financial institutions and supply chains. Nowadays there are
various platforms that offer interesting solutions specifically tailored to improve
or facilitate supply chains, but this sector is huge and variegated, and there still
are many problems not yet addressed.

2 ALGORITHMS AND PARAMETERS FLEXIBILITY 3

Here we propose the technical specification for a decentralised platform de-
voted to smart contracts [12, 13] with a specific focus on the needs of Industry,
complex supply chains, IOT devices, with significant designing efforts on the
security of this platform and its cryptographic and protocol-related aspects.
The proposed blockchain is called Quadrans Blockchain (QB) and consists of
three sub-blockchains, the SynchroChain, the MasterChain and the ShardChain.
QB supports two currencies: Quadrans Tokens (QDTs) and Quadrans Coins
(QDCs). Users possessing QDTs enjoy special priviledges, and are called To-
kenHolders.

Background

We started working taking into consideration the very long and articulated food
supply chain because it starts from crop fields and it ends to restaurants and
shops. Transparency in the processing and geographical indications schemes
such as DOC and IGP can add substantial value to a product, and customers
grow ever more conscious of the importance of the origin of what they eat.
Food apart, there are many sectors we are working with, e.g. textile, pharma,
energy and public administration. There are tangible economic incentives in
adopting technologies that enforce a controlled, secure and publicly auditable
supply chain. In this scenario there are many delicate aspects that need to be
taken care of: data needs to be tamper-proof and reliably authenticated and
verified, some information may be confidential and only shared with specific
partners, participation has to be adequately rewarded while preventing and
discouraging malicious behaviour.

2 Algorithms and Parameters Flexibility

Quadrans is a blockchain designed to support interaction among users with pecu-
liar and heterogeneous characteristics: from IOT devices, that power monitoring
and automatic update of product status in the supply chain, to end consumers
and companies. Such diversity calls for considerable levels of flexibility when
choosing cryptographic primitives, because the computational resources at the
disposal of each actor may differ quite a lot.

Moreover the realm of information security is in constant evolution, so it is
of paramount importance to have a flexible and resilient approach, capable of
adapting to novel discoveries and improvements. In fact technological advance-
ments may render current solutions insecure or open the way to much more
efficient alternatives, and scientific research could have disruptive cryptanalytic
breakthroughs or discover powerful new approaches.

For these reasons we adopt a flexible approach to the selection and usage of
cryptographic primitives and their parameters, favouring some standard choices
to optimise efficiency but allowing each user to employ its own choice, in order
to balance between security and computational cost, or even to avoid suspicious
constructions (i.e. fear of backdoors).

2 ALGORITHMS AND PARAMETERS FLEXIBILITY 4

2.1 Smart Contract Cryptographic Kernel

To manage this ductile design we employ a system of special smart contracts
that act like a sort of cryptographic kernel. In particular they define and encode
the available algorithms for each type of primitive, and validate and organise
their parameters.

Quadrans allows the usage of any algorithm of a non-static pre-approved
list, which initially contains our starting selection. A smart contract updatable
every epoch is responsible to introduce new approved algorithms and maintain
a sub-list of up to 63 standards that are efficiently encoded, from a total of up to
216 different algorithms (a limit that we consider over-conservative). For every
scheme in the list, there is a dedicated smart contract that defines the operating
parameters of the algorithm.

In more detail the smart contract specifies three standard sets of parameters
that correspond to just as many levels of security:

• Basic: suitable also for less powerful devices and interaction with legacy
applications;

• Intermediate: a middle tier that strengthens the security while balancing
efficiency;

• Enhanced : a higher-security level, that is fit for more sensitive and long-
term information.

In addition to these standards, users are allowed to adopt their own parameters,
so that usage can be furthermore tailored to specific needs (for example users
can adopt their own elliptic curves), submitting them to the smart contract. In
fact the same smart contract is used also to validate and assess proposed sets
of parameters, to ensure that they satisfy a minimum level of security (that can
be lower than the one of the basic parameters, to reach out to users that might
have stringent constraints).

This approach optimises storage space and validation effort, since each set is
stored and validated only once. Each smart contract in the kernel specifies a list
of set of parameters and three indexes that identify which entries correspond
to the three standards, so that the standard can easily be updated to adapt to
cryptanalytic breakthroughs maintaining optimal encoding for these preferred
sets. To preserve integrity and backwards compatibility the previous standard
indexes are also shown by the smart contract, alongside the timestamp (epoch
block index) of the moment the outdated value has been superseded. At the
beginning these standard indexes are 00000000, 00000001, 00000002, so the
first three entries in the parameter list are initialised with the starting choices
for the three standards, later the list can be expanded up to 232 − 1 (more than
four billion) entries than can therefore be indexed with a four-byte value.

The other information stored in the smart contract is a hash-link to the
encoding specification that defines how to actually encode parameter sets and
interpret related values (e.g. public keys for a signature scheme). Users can
then submit their parameter set of choice to the smart contract, which will
append it to the list (encoded according to the specification) if the entry is
not a duplicate and if the parameters pass a series of tests that establish that
they properly define a correct instance of the signature algorithm and sustain a
minimum level of security.

3 USERS 5

More details and the initial proposals for the encodings are presented in [14].

2.2 Encoding

The encoding of algorithm choice has been developed so that the majority of
cases require a single byte, that is called the discerning byte. In particular this
byte encodes the index of the standard algorithm (in the six most significant
bits), and the standard set of parameters (in the crumb composed by the two
least significant bits). The crumbs 01, 10 and 11 correspond to the standard
parameters associated to the aforementioned levels of security, namely the basic,
the intermediate and the enhanced level; the crumb 00 signals a non-standard
choice and therefore it must be followed by additional 4 bytes that specify
the index of the chosen parameters in the smart contract list. Similarly the
index 000000 for the standard algorithm signals a non-standard algorithm, so 2
additional bytes that specify the index of the chosen algorithm follow. A null
byte indicates a non-standard algorithm with non-standard parameters, so it is
followed by 6 bytes: first 2 for the algorithm, then other 4 for the parameters.

So the discerning byte (or the following 2 bytes) identifies the smart contract
that lists the parameters and specifies if a standard set is used; if that is not
the case the index of the chosen set follows, so one can retrieve the value of the
parameters from the smart contract. At this point algorithm and parameters
are established, so the following bytes can be correctly interpreted referring to
the specification defined in the smart contract (e.g. as a public key).

Example 1. Suppose that the following string is the hexadecimal representa-
tion of a public key:

0582006e9398a6986eda61fe91674c3a108c399475bf1e738f19dfc2db11db1d28

The first byte (05) identifies the scheme and therefore how to process the rest.
Its binary representation is:

000001 01

The first (and most significant) six bits identify the first standard algorithm
defined in the digital signature algorithms smart contract (e.g. ECDSA), the
last (and least significant) two bits say that the basic-level standard is used
(referring to the ECDSA parameters smart contract, e.g. the curve secp256k1).
This means that what follows the first byte is the encoding of the public key,
since the curve parameters are established and known. Note also that the pa-
rameters define the length of the encoding, so the parser knows how many bytes
to read. ECDSA’s public key is a point of an elliptic curve, and the parameters
used imply the quadratic residuosity of the second coordinate, so the remaining
sixteen bytes of the public key are the first coordinate of the point.

3 Users

Users of Quadrans blockchain are identified by their address. Such an address is
derived from a public key whose correspondent private key is owned by the user
it identifies. Quadrans allows its users to choose from various digital signature
algorithms for transaction signing, therefore the format of such public keys can
vary but the format of the address is standardised for everyone. With “user”

3 USERS 6

we always mean a hardware/software interacting with the Quadrans Blockchain,
rather than the actual person who owns the hardware/software.

3.1 Digital Signatures

Quadrans exploits the flexible adoption of various digital signature algorithms
as described in Section 2 to let each user balance security and computational
cost, moreover we distinguish between transaction-signing and block-signing,
requiring much higher levels of security for block signatures.

In fact we can assume that blocks are created and validated by fairly powerful
users of the network that can surely afford to invest more resources in order to
strengthen the long-term safety of the whole chain. Considering also the relative
proportion between blocks and transactions (the former comprise hundreds of
instances of the latter) we can employ signatures that are much more space-
consuming for the blocks without debilitating the overall efficiency. For these
reasons Quadrans blocks must be signed with Post-Quantum secure algorithms.

3.1.1 Available Digital Signature Algorithms

The initial selection of approved schemes is the following, where we present
public-key length, signature length, and compare their combined length (w.r.t.
a standard security level of 128 bit).

• ECDSA [22] is the widespread standard, especially in the blockchain world.
This means that implementations are widely available, even with optimi-
sations for low-power devices. Both public keys and signatures are very
short (32 bytes once the curve has been fixed), and together with its low
computational cost this makes ECDSA an efficient signature. However
the security is based on the difficulty of the discrete logarithm (DLOG)
over the group of points of an elliptic curve, and Shor’s algorithm for
quantum computers breaks this assumption [31]. Therefore this choice is
not suitable for block signing, where a post-quantum secure algorithm is
required.

• EdDSA [2, 4] is another signature scheme based on elliptic curves, that
is gaining advantage in terms of usage on the more classical ECDSA.
The particular types of curves employed (the so called Twisted Edwards
curves [1]) make computations less susceptible to side-channel attacks
and allow for further optimisation especially in batch signature verifi-
cation. Another practical advantage is the deterministic nature of the
signature that avoids the pitfalls of incorrect generation of random pa-
rameters, which have led to complete breaches of ECDSA signatures in
the past [30]. Key and signature sizes are equal to those using ECDSA,
the computational cost is comparable or lower, and the security is based
on the same mathematical assumption: so EdDSA is an interesting alter-
native to ECDSA, but is likewise unsuitable for block signing.

• CRYSTALS-DILITHIUM [16] is a lattice-based post-quantum signature al-
gorithm. The primary advantage of Crystals-Dilithium over similar PQ
proposals is the avoidance of Gaussian Sampling [26], which is a primi-
tive easy to misuse [5] and that may lead to weakening attacks hard to

3 USERS 7

detect. Public keys are a little more than 1 KB long, with signatures of
roughly 2 KB. This is almost two orders of magnitudes more than elliptic
curve-based (EC) schemes, but it is a price to pay for post-quantum se-
curity. This scheme has one of the lowest combined length of public key
and signature among PQ algorithms.

• FALCON [20] is also a lattice-based post-quantum signature algorithm. It
features small signatures and key sizes against other PQ schemes, but it
uses Gaussian Sampling that has some potential issues (see above). Public
keys are little less than 900 B, and signatures around 650 B: the shortest
combined length among NIST round 2 candidates, but they are still an
order of magnitude longer than EC signatures.

• SPHINCS+ [3] is a post-quantum signature algorithm, this time based on
hash functions. The construction makes few security assumptions (so it
should be more resilient), and the implementation is quite similar to a
scheme which has already been adopted internationally (XMSS [6]). How-
ever implementations should account for fault attacks, that could allow
signature forgery at a reasonably-low computational cost. Public keys are
only 32 B long, however signatures are quite long (around 8 KB).

• GeMSS [8] is a post-quantum signature algorithm, based on multivariate
polynomials. It is an evolution of the well studied scheme QUARTZ [28],
obtained by incorporating in it the latest research results in terms of se-
curity and efficiency. Like other multivariate schemes, it features small
signatures but has large public keys: signatures are only around 48 B,
public keys are 417.4 KB long.

• PICNIC [10] is a post-quantum signature algorithm, based on a combi-
nation of block ciphers, hash functions, and zero-knowledge proofs. The
scheme is designed to be extremely compact for hardware implementa-
tions, allowing for easy hardware acceleration to make the cipher light-
weight on low-power devices. It is also nearly compatible with current
X.509 certificate schemes [21], and claims integrated tamper resistance.
Similarly to SPHINCS+, public keys are very short (32 B), but signatures
are definitely longer: around 12.5 KB (signature size is not fixed with this
scheme).

• RAINBOW [15] is another multivariate post-quantum signature scheme. It
has a simple mathematical construction, which eases a smooth and correct
implementation, and it is a quite old scheme (first proposed in 2005). This
means that its security has been widely researched and has withstood the
test of time. It targets computational efficiency and small signature sizes,
but has large key sizes: signatures are only 64 B, but public keys are
around 58 KB.

The selection has been made by analysing the current standards and the
state-of-the-art of digital signature algorithms, while referring in particular to
the ongoing NIST selection regarding post-quantum algorithms [32] (see also
[27]). All post-quantum schemes in our list have advanced to the third round
of the NIST selection, either as finalists or as alternate candidates. In defining
our list we gave priority to low combined-length of public key and signature and

4 NODES 8

variety on the underlying security assumptions, to improve resiliency against
future unexpected attacks.

Besides the smart contract that defines parameter sets, Quadrans requires
that for each digital signature algorithm there also is a smart contract that
allows to verify any signature computed with that algorithm, so that it can be
used as a reference implementation (although not optimised since it is general
purpose for all parameters) and as last resource to verify signatures for wallet
implementations that do not natively support that algorithm.

3.2 Addresses

User addresses in Quadrans are strings of hexadecimal characters that encode
some bytes derived from the description of the user’s authorised keys and com-
mon name, plus some other checksum bytes that help avoiding mistakes and
clerical errors3. This means that users may check the formal validity and co-
herence of an address even offline.

The exact syntax of addresses will be decided at a later stage of the block-
chain development according to [29].

4 Nodes

The Quadrans Blockchain is structured into three types of intertwined chains: a
SynchroChain, a MasterChain, and multiple ShardChains (See Section 5). The
Quadrans network is composed by two sets of active nodes:

• MasterNodes, which filter incoming transactions and are in charge of
achieving a global consensus, maintaining the MasterChain and updating
the Global State of the architecture, moreover they are also responsible of
maintaining synchronization by managing the SynchroChain.

• Miners, which work in parallel on the ShardChains, validating transac-
tions and running Smart Contracts, and are in charge of achieving a local
consensus.

4.1 MasterNodes

To become a MasterNode, a TokenHolder needs to

• possess enough QDTs;

• (participate and) win a PoS competition.

If a TokenHolder wins the PoS competition (possibly with the help of other
TokenHolders) during epoch h, then it will be a MasterNode during epoch h+2.
MasterNodes are in charge of:

3At this preliminary stage we define addresses as a simple string of 64 hexadecimal
characters encoding the 256 bit digest of Keccak-256 (to achieve retro-compatibility with
Ethereum [7]) computed with the encoding of a single public key as input. However we intend
to further study the matter and improve and expand the algorithm for address computation
to achieve the goals presented in this section in a future release.

5 CHAIN STRUCTURE 9

• managing incoming transactions (they include the incoming transactions
that pass a formal check into a Transaction Pool);

• achieving the Global Consensus:

– validating Miners’s work and constructing the MasterBlocks;

– managing the Global State by aggregating the Local States;

4.1.1 SynchroNodes

The TokenHolders that participate in the PoS competition become Synchro-
Nodes, i.e. players in the consensus protocol of the SynchroChain (see Sec-
tion 6.2). Therefore SynchroNodes are in charge of:

• enforcing time limits on block creation, enabling the other consensus mech-
anisms;

• deciding the behaviour of the Quadrans Blockchain:

– deciding the rules to be used to determine the blockchain parameters,
in order to optimise the workload of Miners, achieve the best possible
throughput, and maintain strong security;

– collecting solutions of the PoW competitions from prospective Min-
ers.

4.2 Miners

If a TokenHolder wins the PoW [25, 24] competition during epoch h, then it
will be a Miner during epoch h+ 2 (see Section 6.3.1).
Miners are in charge of managing ShardChains by:

• contacting MasterNodes to obtain the transaction pool;

• running Smart Contracts as specified by valid transactions;

• updating the Local State;

• creating ShardBlocks;

• reaching a local consensus on the ShardBlocks not yet confirmed by the
MasterChain.

5 Chain Structure

The Quadrans Blockchain is a set of blockchains, where Miners are divided
into shards to work simultaneously on the computation of Smart Contracts,
and therefore achieve a large throughput of executed transactions [23]. The
blockchains managed by Miners are called ShardChains. In addition, Master-
Nodes work on a higher-level chain, the MasterChain, collecting the states of
ShardChains to achieve a global consensus. Finally, time is divided into slots of
fixed length, and each slot is pre-assigned to a single Miner per ShardChain and
to a single MasterNode. To coordinate the work on these chains and enhance
safety, Quadrans has an extra chain, called SynchroChain, that marks the be-
ginning of time-slots, time-stamps the other blocks, and defines the parameters
of the ledger.

5 CHAIN STRUCTURE 10

5.1 The SynchroChain

The consensus mechanisms that regulate the Quadrans blockchains rely heavily
on time-related concepts, therefore it is necessary to coordinate and synchro-
nize their execution. The SynchroChain acts as a Trusted Third Party that
time-stamps the blocks on the other chains, and regulates the flow of time. In
Quadrans time is discretized on two levels:

• epochs inside which parameters of the chains have fixed values, but these
values can change from one epoch to the other;

• time-slots that regulate the production of blocks (one block per chain per
time-slot). The number of time-slots in an epoch is a parameter, therefore
different epochs can have a different number of time-slots.

The SynchroChain is controlled by SynchroNodes, which in epoch h are the
TokenHolders which were candidates in the MasterNode election held during
epoch h− 3.

At the end of each time-slot the SynchroNodes produce a SynchroBlock that
timestamps (and partially validates) all the blocks created during that time-slot.
Consequentially the publication of a SynchroBlock marks the start of the next
time-slot.

The last SynchroBlock of an epoch is called EpochBlock and contains addi-
tional information that regulates the operation on the chains (see Section 5.1.2
for more details):

• epoch parameters, fixing their values to be used in a future epoch (some
values are dictated for the next epoch, some for the one after, and some
for an epoch even further into the future);

• the information regarding the PoW competitions that regulate the Shard-
Chains.

SynchroBlocks are referenced by the ShardBlocks created in the following time-
slot, so it is necessary that the consensus on the SynchroChain is reached im-
mediately, hence a BFT algorithm [9] has been chosen, as described in Section
6.2.

Every SynchroBlock gives preliminary validation to the blocks of the other
chains created in its time-slot (at most one MasterBlock and one ShardBlock
per shard) by hash-linking them.

Linked to the EpochBlock there is a Delta State: information useful to
reconstruct the current state. The knowledge of the state at the time of the
previous EpochBlock and of the Delta State allows the correct reconstruction
of the current state. This feature can be seen as the inclusion of check-points
of the state, and it allows both fast verification of the correctness of the state
and fast update of the state. Any new node can request only the Delta States
of EpochBlocks and correctly obtain the current state.

5.1.1 SynchroBlocks

The structure of SynchroBlock Syhi is shown in Table 1.
SynchroBlocks are accompanied by certificates, which are essentially a col-

lection of signatures on the SynchroBlock by a set of SynchroNodes attesting

5 CHAIN STRUCTURE 11

HEADER

H(Syhi−1) hash-pointer to previous SynchroBlock
Ts timestamp
Ri root of the Merkle tree of DATA

DATA

H(Mahi)

H(Shh1,i) hash-pointers to the blocks created
... during ith time-slot of epoch h

H(ShhNh,i
)

EPOCH
DATA

(only in EpochBlocks, i.e. if i = eh)

parameters value of parameters for following epochs

PoW DATA information that regulates the consen-
sus on the ShardChains

Table 1: SynchroBlock Syhi created at the end of the ith time-slot of epoch h.

the authenticity of the SynchroBlocks. They are not included in the blocks since
there may be different certificates, equally valid, on the same block. We refer
to Section 6.2 for more details.

5.1.2 EpochBlocks

The EpochBlock Eh, published at the end of epoch h, besides the hash-links
contained in every SynchroBlock, collects the PoW solutions computed during
epoch h, submitted by prospective miners of epoch h + 2. Lastly, the Epoch-
Block Eh defines a series of parameters that regulate almost every aspect of the
Quadrans blockchain. These parameters are:

• Nh+3, the number of ShardChains that will be active in epoch h+ 3;

• e′h+4, the target number of time-slots for epoch h+ 4;

• mmax,h+3, the maximum number of ShardBlocks that a Miner will be able
to mine during epoch h+ 3;

• paramh+1, the specification for the LSAG signature to be used to generate
the public keys submitted with prospective Miners’ enrollment transac-
tions in epoch h + 1, and that will be used to submit PoW solutions in
epoch h+ 3 to become Miners during epoch h+ 5;

• ασ,h+1, for 1 ≤ σ ≤ Nh+1, the coefficient to be used to compute the weight
of ShardBlocks during epoch h+ 1;

• lh+1 and wh+1, the parameters that regulate the finalizability of Shard-
Blocks of epoch h+ 1;

5 CHAIN STRUCTURE 12

• nmax,h+4 and nmin,h+4, the maximum and minimum number of Master-
Blocks that a MasterNode might create in epoch h+ 4;

• l′h+1 and w′
h+1, the parameters that regulate the finalizability of Master-

Blocks of epoch h+ 1;

• H, the hash function instance to be used to compute hash-links between
blocks in epoch h+ 1;

• H, the specification of the pseudorandom function to be used in the PoWs
computed in the epoch h+ 1;

• the specifications of the PQ-secure digital signature algorithms that may
be used to sign ShardBlocks and MasterBlocks of epoch h+ 1;

• the specifications of the unique-signature and aggregable-signature algo-
rithms to be used in the consensus protocol of the SynchroChain during
epoch h+6: prospective candidates will publish related public keys during
epoch h+ 1;

• n, S,K,Ω,Λ, λ, ϵ, the parameters of the consensus protocol of the Synchro-
Chain to be used during epoch h+ 2;

• the specifications of the algorithm that, in the consensus protocol of the
SynchroChain during epoch h + 2, assigns the maximum value of the
attempt counter to each SynchroNode (in the unique signatures that select
Active SynchroNodes) according to its stake;

• the specifications of the algorithm that assigns shards to competitors for
the PoW competition that will be held in epoch h+ 3;

• the specifications of the shuffling algorithms that assign PoW solutions
and PoS candidates to time-slots of epoch h+ 4;

• the specifications of the reward and refund mechanisms for the Miners
working in epoch h+ 5 and the MasterNodes working in epoch h+ 6;

• the minimal amount of token a TokenHolder has to possess in order to
submit an enrollment transaction during epoch h+ 1 to become Miner in
epoch h+5, and the amount necessary to submit a candidacy transaction
in epoch h+ 1 to become MasterNode in epoch h+ 6.

The specific values of these parameters are determined through deterministic
processes that take in consideration the status of the Quadrans ecosystem as a
whole (chains, network, activity, . . .). These processes are described in dedi-
cated Smart Contracts managed by the Quadrans Foundations, which regulates
the addition of new versions of these processes according to various heuristics.
Note that for some parameters, e.g. the hash function to use to link blocks,
these decisional processes may simply be a constant function, i.e. a single value.
So in this case the Quadrans Foundations specifies in the smart contract which
values are suitable, and the SynchroNodes decide among these options.

Therefore the EpochBlocks do not contain the actual value of the parameters,
but rather a link to the rule to be used to compute it, i.e. a reference to the
Smart Contract and the desired version, chosen among the options proposed by
the Quadrans Foundation and approved by the TokenHolders.

5 CHAIN STRUCTURE 13

5.2 ShardChains

The ShardChains are parallel blockchains where the Miners actually execute
transactions and smart contracts. To manage the scalability, the number of
ShardChains per Epoch (and therefore the degree of parallelization) is flexible.
During epoch h there are Nh parallel ShardChains (a parameter specified in the
EpochBlocks), and the Epoch lasts eh time-slots, so during each Epoch a total
number of Nh · eh blocks can be created.

The selection of the TokenHolders that become Miners and create Shard-
Blocks during Epoch h is made through a PoW competition held during Epoch
h−2, whose results are included in the EpochBlock Eh−2 (see Section 6.3.1). In
this way, Miners know in advance the time-slots in which they have to be active
to create the assigned blocks. Each Miner active in a ShardChain is in charge
of the creation of a maximum of mmax,h blocks. At each Epoch, the number of
Active Miners is therefore at least Nh·eh

mmax,h
.

Each ShardChain has the duty of managing transactions, that are divided
into distinct pools according to their input address.

When Miners create blocks during their assigned time-slots, they update the
local state, and then send a Delta State to the MasterNodes via an off-chain
communication. The MasterNodes use this Delta State to update the Global
State.

Remark 1. Miners have to be aware of the balance of each account whose address
is managed by their own Shard (they can do this by keeping a copy of their
ShardChain’s local state), and have to check in the Global State for transactions
coming from other Shards which may have changed the balance (they can do
this by off-chain communication with MasterNodes).

5.2.1 ShardBlocks

The structure of ShardBlock Sh,jh created by Miner m is shown in Table 2.

5.2.2 Transactions between shards

When a transaction tx is related to one shard, but its effect ends in a state
update on another shard, tx has to be validated by both shards. This means
that tx generates multiple sub-transactions, one for each shard involved into the
state update. tx is placed in a “pending” status until all the subsequent sub-
transactions are validated by the involved shards. This may require an iteration
since sub-transactions could generate new sub-transactions recursively. Until all
the iterations are concluded, all the involved transactions remain in “pending”
status. At the end of this process all the transactions are placed together and
sent to a Masternode to be inserted in the corresponding MasterBlock. However,
at the end of each epoch, all pending transactions will be purged and have to
be mined again. Therefore some iterations could not finish and even tx will be
purged and it will have to be mined again.

5.3 The MasterChain

The MasterChain is a blockchain where the MasterNodes aggregate the com-
putations of each ShardChain that have reached local consensus into a global
state.

6 CONSENSUS 14

HEADER

H(Shhσ,j) hash-pointer to ShardBlock Shhσ,j
H(Mahs) hash-pointer to MasterBlock Mahs
H(Syhi−1) hash-pointer to previous SynchroBlock
(x,K, c) PoW data (see Section 6.3.1)
Rh,jh Merkle root of executed transactions
H(Σh

σ,i) digest of the local state

sigm(Shhσ,i) signature of the header by Miner m

DATA

txh,jh,1
txh,jh,2 list of executed transactions
...

LOCAL STATE

Table 2: ShardBlock Shhσ,i created by Miner m during the ith time-slot of Epoch

h, on the shard σ. sigm(Shhσ,i) is the signature of the first five entries of the

header of the block Shhσ,i. The signature is formally put inside the header, since
hash-pointers are defined as the hash value of a header.

Since time is divided into Epochs of fixed length, during each Epoch h the
MasterNodes create eh blocks of the MasterChain. During its assigned time-slot,
the active MasterNode creates a block of the MasterChain.

Each MasterBlock has the role of finalizing the State of the Quadrans Block-
chain by putting together all local states updated by Miners during the creation
of ShardBlocks. All information on the ShardStates is collected by MasterNodes
via off-chain communication as soon as Miners create new ShardBlocks.

The consensus for the MasterChain is obtained by looking at the chain with
larger weight (see Section 6.4.2)

5.3.1 MasterBlocks

The structure of MasterBlock Mt created by Miner α is shown in Table 3.

6 Consensus

We consider three levels of consensus:

• a local level, driven by Miners working on ShardChains;

• a global level, reached by MasterNodes working on the MasterChain;

6 CONSENSUS 15

HEADER

H(Mahs) hash-pointer to MasterBlock Mahs
H(Syhi−1) hash-pointer to previous SynchroBlock

H(Shh1,i1)
... hash-pointers to finalized ShardBlocks

H(ShhNh,iNh
)

H(Σi) digest of the global state

sigα(Mahi) signature of the header by Miner α

GLOBAL STATE

Table 3: MasterBlock Mahi created by MasterNode α during the ith time-slot
of epoch h. The signature is formally put inside the header, since hash-pointers
are defined as the hash value of a header.

• a coordination level, reached by SynchroNodes through the SynchroChain.

The levels are intertwined: MasterNodes rely on the local consensus reached
by Miners to achieve the global consensus, Miners look at the choices made by
MasterNodes to safely reach a consensus on their ShardChain, and everyone
relies on the parameters and time-stamps established by the SynchroChain.
The first two levels of consensus are reached using a weight-based rule, thus
the heaviest chain dictates the established state, while the SynchroChain needs
immediate finality, so is governed by a Byzantine Fault Tolerant consensus mech-
anism.

Each MasterBlock and ShardBlock is created by a single TokenHolder (a
MasterNode and a Miner respectively), and afterwards is validated (or dis-
carded) by subsequent Blocks, that may endorse it (alongside every block it
endorses, in a recursive manner) by hash-linking it. Honest TokenHolders con-
sider valid, and thus may endorse, only blocks that meet a series of criteria:

• timing : the block must have been created and broadcast inside the limits
of the time-slot;

• authorization: the blocks on the ShardChains and the MasterChain in a
given time-slot have to be created by specific TokenHolders, thus the cre-
ator has to sign the block and include a proof that it actually is authorized
to create the block;

• formal correctness: the block must respect the format dictated by the
chain it belongs to and the values of the parameters in the current epoch,
moreover the signatures included in the block must be verified, and the
hash-links must be admissible (see Sections 6.3.7 and 6.4.2);

6 CONSENSUS 16

• semantic correctness: the block correctly processes the data pertaining to
its chain, and updates the state accordingly.

6.1 Definitions

We state here some definitions that are necessary to define the validity and
finality of a block (both on a ShardChain and the MasterChain).

Definition 2 (Ancestor and Descendant). Let Bi and Bj be two blocks on the
same chain, with i ≤ j (with this we imply that Bi has not been created after
Bj). Then Bi is an ancestor of Bj and Bj is a descendant of Bi, if there is
a sequence of blocks (of the same chain) {Bkl

}l∈{0,...,n} with kl ≤ kl′ if l ≤ l′,
such that i = k0, j = kn and Bkl

hash-links Bkl−1
for l ∈ {1, . . . , n}. If n = 1

(and i < j) Bj is an immediate descendant of Bi.

Note that by this definition a block is an ancestor and a (non-immediate) de-
scendant of itself.

Definition 3 (Simple Line). A simple line is a connected directed graph where
one node has no inbound edges, one node has no outbound edges and every
other node has exactly one inbound and one outbound edge.

Definition 4 (Unresolved Branch). An unresolved branch is a simple line of
blocks (i.e. a graph where the blocks are the nodes, the internal hash-links are
the edges) that starts from an immediate descendant of a finalized block and
ends in a leaf (i.e. a block such that there is not a more recent block that
hash-links it).

Paraphrasing the definition, given a tree of blocks rooted in a finalized block,
the unresolved branches are the paths from the root (excluded) to the leaves.

Definition 5 (Seniority of Unresolved Branches). Given Γ1 and Γ2, two unre-
solved branches of the same chain as per Definition 4, then Γ1 is older than Γ2

if:
min (i : Bi ∈ Γ1, Bi /∈ Γ2) < min (i : Bi ∈ Γ2, Bi /∈ Γ1) , (1)

where we continue assuming that Bi has been created before Bj if and only if
i < j.

6.1.1 Blocks Finalization Assumptions

As we will see, the consensus on the various chains proceeds with different rules
and different paces, so blocks may become final (i.e. definitively accepted as
correct and part of the blockchain by all honest Nodes) with different speeds,
depending also on possible fragmentations or attacks.

However, an upper bound is necessary to analyze security and correctness of
protocols, so we will assume that, at the end of Epoch h+1, the blocks created
during Epoch h which are not finalized will never be finalized, and therefore can
be discarded.

6 CONSENSUS 17

6.2 SynchroChain Consensus

Every SynchroBlock gives preliminary validation to the blocks of the other
chains created in the same time-slot (at most one MasterBlock and one Shard-
Block per shard) by hash-linking them. This validation is a necessary but not
sufficient condition for any block to be considered valid and be included in the
final blockchain (that prunes the blocks excluded by the consensus), since it
only concerns timing. That is, the network only checks that the block has been
broadcast inside the limits of the time-slot.

The SynchroBlocks are created via a Cob Protocol run [17, 18, 19], a lead-
erless Byzantine Fault Tolerant protocol which allows a network to reach agree-
ment on a vector of time-stamps of a set of events happened in a given time
interval. Each event corresponds to a specific component of the vector and the
consensus process is carried out in parallel on each component. The nodes that
manage this consensus are called SynchroNodes, and each of this nodes halts
the protocol execution only when it gets hold of a certificate for the new block.
The protocol guarantees that such a certificate is created within S +K steps,
and that only one block may be certified in each run.

For the SynchroBlock consensus process, the events to be recorded are the
MasterBlock and ShardBlocks broadcast within the prescribed time-slot, and
the vector of time-stamps is a vector containing the hash digests of such blocks.
Therefore the network must reach consensus on which digests to accept, declar-
ing that the corresponding blocks have been created and broadcast in the pre-
scribed time.

For the EpochBlock consensus process, the events to be recorded are ex-
panded to include also the parameter list described in Section 5.1.2, and the
solutions to the Proof of Work competition performed and submitted during
the current epoch by the Miners.

The agreement process is performed in parallel on each component of the
vector and, if agreement on some component is not reached after a number S
of steps, such component is discarded. For the SynchroBlock this means that
the corresponding block will not be considered to be valid and discarded as if
it was not created by the Miner (or MasterNode) in charge. However, the Cob
Protocol guarantees that, if the block creator is honest and broadcasts its block
in time, the agreement will be reached on the corresponding component at the
beginning of the protocol run and it will not be discarded during the protocol
execution. Therefore the hash of the block will be included in the corresponding
SynchroBlock and will be eligible to be included in the final blockchain.

6.2.1 SynchroNodes Selection

During epoch h, the Cob protocol that determines the consensus on the Synchro-
Blocks Syhi (and on the EpochBlock Eh) is run by the TokenHolders that during
epoch h − 5 submitted a candidacy to become a MasterNode during epoch h.
Note that this set includes both the MasterNodes of epoch h and those who were
candidates but ultimately did not accumulate enough stake to become Master-
Node. These TokenHolders are called SynchroNodes and are all expected to
follow the protocol execution, which is divided in steps.

Every step essentially consists in collecting and propagating data from and
to the network for a specified amount of time and then compute a message

6 CONSENSUS 18

based on this data and diffuse it on the network. Every SynchroNode should
help propagating messages (so maximum diffusion is achieved) and update its
internal state, but at each step only a subset of the SynchroNodes are Active
and can compute and broadcast new messages at the end of the step.

The selection of which SynchroNodes will be Active in each step is made via
a verifiable random function, and the SynchroNodes will accept a message only
once they can verify that the sender was authorised. This peculiar function
is a unique-signature algorithm, which has only one valid output on a fixed
input, and this output (called signature) satisfies a certain condition with known
probability. Specifically the condition can be parametrized in order to adjust
the probability with which the signature satisfies it. We call a signature for a
step that satisfies the condition a winning signature for that step.

The input to be signed is essentially the concatenation of a time-slot counter,
a protocol step counter and an attempt counter, so a SynchroNode is selected
to be Active in a step if it can produce a winning signature where the attempt
counter is below a threshold. This limit is proportional to the total stake accu-
mulated by the SynchroNode during the PoS competition, so with enough stake
a SynchroNode may be selected and thus act as an Active SynchroNode multiple
times. Basically, each SynchroNode is selected with probability proportional to
its stake. The parameters of the signature condition are calibrated so that at
every step there is an expected number n of Active SynchroNodes.

The signature can be computed only with a private key which is kept by the
SynchroNode, but it can be checked by anyone with a corresponding public key,
which is published by the TokenHolder contextually with its candidacy. This
means that simply by attaching a winning signature to a protocol message the
SynchroNode demonstrates that it is an Active SynchroNode and has the right
to broadcast the message.

Note also that the signatures can be computed in advance, so, when the
Cob protocol parameters to be used during epoch h are published at the end
of epoch h − 2, each SynchroNode can check whether or not it will be active
during each possible step of each time-slot of epoch h, and prepare in advance.

6.2.2 SynchroBlock Creation and Certificates

At every protocol run only one SynchroBlock can be certified but two distinct
nodes might be in possession of two different certificates for the same Synchro-
Block. In fact a certificate consists of a set of tH messages from each of two
consecutive steps of the Cob protocol (actually a Coin-Fixed-To-0 and a Coin-
Fixed-To-1 step) if it is produced within S steps, otherwise the certificate will
be produced at the end of STEP S +K and will consists of tH messages from
such step. The set of messages which compose the certificate must support the
same vector.

In order to improve the efficiency of SynchroBlock propagation, the signa-
ture algorithm used to certify Cob protocol messages are computed with an
aggregable-signature algorithm. This allows to aggregate multiple signatures
of the same data into a single signature that is verifiable against a public key
that is derived from the original public keys corresponding to the individual
signatures. This enables the compression of certificates into:

• a bit-string that encodes which SynchroNodes signed the certificate: they
are ordered according to their stake, and for each SynchroNode there

6 CONSENSUS 19

are as many bits as the maximum value of the attempt counter for this
SynchroNonde (which is proportional to the stake), then each bit sig-
nals whether the corresponding SynchroNode (and attempt counter value)
signed the certificate or not;

• the list of the unique-signatures that certify that the SynchroNode was
indeed Active (in the same order as before so they can easily be checked
against the corresponding public keys, which are published contextually
with the candidacy of the SynchroNodes);

• the aggregated signature, that can be checked computing the correspond-
ing public key using the individual keys indicated by the bit-string.

6.2.3 EpochBlocks

At the end of epoch h, the SynchroNodes must reach agreement on the Epoch-
Block Eh. The EpochBlocks, besides the hash-links contained in every Synchro-
Block, define the parameters listed in Section 5.1.2, and contain the list of PoW
solutions computed during epoch h, submitted by prospective miners of epoch
h+ 2.

The consensus process is carried out by the SynchroNodes as for the Synchro-
Blocks, just with a different vector of values to agree on. This vector is built in
the following way:

• the component 0 refers to the newly created MasterBlock;

• the subsequent Nh components (1, . . . , Nh) refer to the newly created
ShardBlocks;

• the subsequent 28 components are the parameters that must be defined
in the EpochBlock (see Section 5.1.2);

• the other components contain the PoW solution: every legitimate solution
s is inserted in the component H(s) seen as the binary representation of a
natural number.

The output of the function H is the digest of the hash function H (the
same used to hash-link blocks) truncated to the c-th leftmost bit. Note that in
the EpochBlock Eh there may be at most mmax,h+2Mh−2 submitted solutions,
where Mh−2 is the number of TokenHolders that enrolled in the PoW competi-
tion of epoch h submitting an enrolling transaction during epoch h−2. Since H
is collision-resistant, assuming that mmax,h+2Mh−2 ≪ 2

c
2 we can approximate

the probability of a collision as:

mmax,h+2Mh−2(mmax,h+2Mh−2 − 1)

2c+1
(2)

so, the parameter c is determined in such a way that the collision probability is
less than the negligible threshold ϵ, a parameter of the Cob protocol.

Note that a vector computed in such a way may be extremely large in di-
mension, but also very sparse, so we will adopt a representation which allows
us to omit the blank components.

The messages exchanged during a Cob protocol run contain a vector of values
in the first 2 steps and a vector of bits in the following steps; in any case the

6 CONSENSUS 20

portion of the vector v that corresponds to the PoW solutions must be encoded
as

((vc,1, c1), (vc2 , c2), . . . (vck , ck))

where ci ∈ {0, 2c} and vci is not a blank value.
We remark that the vector components corresponding to the parameter list

will likely reach consensus in the very first steps of the Cob protocol, and there-
fore not discarded in the final EpochBlock. In fact these components identify
which rules have to be used to compute the parameters from known values, and
these rules are expected to remain quite stable and be changed only once there
is wide consensus (likely established through off-chain discussions amongst To-
kenHolders). As a consequence, all honest SynchroNodes are expected to begin
the Cob protocol with the same value in these components, which assures rapid
finalization.

However, if agreement can not be reached on one of these parameter rules,
and therefore the corresponding component becomes blank in the EpochBlock,
then the rule to be used is the one established in the most recent EpochBlock
which is non blank in the corresponding component, promoting rule stability.

6.3 ShardChains Consensus

The consensus on the ShardChains is reached through PoW-based mechanisms,
that proceed independently on each shard.

6.3.1 Proof of Work for Miners in ShardChains

From now on we will call Competitors the TokenHolders who want to become
Miners, when needed we will divide them betweenMiningCompetitors (the Com-
petitors who are already active Miners during the epoch in which they compete)
and SimpleCompetitors (the ones who are not Miners in the same epoch).

During each epoch, TokenHolders may compete in the PoW competition.
The results of the competition are listed on the next EpochBlock, and are used
to determine the Miners for the subsequent epoch. In order to avoid attacks
aimed to the Miner of a specific time-slot, its identity must be kept private until
it publishes the block. In particular, no one should know which TokenHolder
is going to mine a new block in a specific time-slot in the future, but also
each miner must be able to prove that, according to the data contained in the
EpochBlock, it was the one selected by the competition. To accomplish this goal
Competitors must produce some commitments that guarantee that they own the
solutions listed in the EpochBlock and that they have found the solutions in a
specified time-slot.

6.3.2 Enrollment Transaction and Shard Assignment

In order to become a Competitor, a TokenHolder must possess enough QDTs:
to become miners in epoch h + 2 a TokenHolder must submit a transaction of
Mimin QDTs during epoch h−2. From now on we refer to this transaction as the
enrollment transaction. This transaction will allow the TokenHolder to submit
solutions to the PoW competition that selects the Competitors who will become
Miners.

6 CONSENSUS 21

Let mmax,h+2 be the maximum number of blocks a Miner can create in the
epoch h+2 (a parameter defined in the EpochBlock Eh−1), with its enrollment
transaction a Competitor communicates mmax,h+2 distinct one-time LSAGSS4

public keys that will be used to anonymously authenticate solution submissions,
i.e. with these keys the Competitor will be able to demonstrate that the fee has
been paid, without revealing the TokenHolder’s Identity. These public keys are
in the form:

Pi = PKgen(xi, paramh), i = 1, . . . ,mmax,h+2 (3)

where paramh is the set of parameters for the LSAG signature scheme to be
used to submit the solutions of the PoW competitions in epoch h, and PKgen
is the function that outputs the public key corresponding to a private key and
a set of parameters.

Example 2. For example param′ may define an elliptic curve with base point
B and a hash function that maps an EC point into another EC point (that will
be used to compute the signature), in this case PKgen(x, param′) = xB.

As a response to these transactions, the SynchroNodes will assign to each
Competitor a shard on which they will mine if they win the competition. The
steps are the following:

1. the SynchroNodes collect all the transactions coming from TokenHolders
who want to become Competitors;

2. the SynchroNodes agree on a division of the Competitors among the
shards:

(a) the SynchroNodes estimate the computational power of each Com-
petitor counting the number of blocks it mined in the latestN epochs;

(b) the SynchroNodes divide the Competitors in brackets of similar esti-
mated computational power;

(c) to each shard is assigned a number of Competitors for each bracket
with the goals of distributing the estimated computational power and
the members of each bracket as evenly as possible among all shards;

(d) the actual Competitors are chosen randomly from the members of
the bracket, so that no one can predict to which shard a Competitor
will be assigned;

3. at the end of epoch h − 1, the Competitors can compute which shard
is assigned to them using the specifications published in the EpochBlock
Eh−1.

6.3.3 Simple Competition and Mining Competition

The competition takes place during Epoch h, and it is slightly different for
MiningCompetitors and SimpleCompetitors. Let eh be the number of time-
slots in epoch h, Syhi be the i-th SynchroBlock of epoch h. The competition
proceeds as follows:

4Linkable Spontaneous Anonymous Group Signature Scheme

6 CONSENSUS 22

• the SimpleCompetitors wait until the creation of Syheh−2 and they compete
all together during the penultimate time-slot of epoch h, and can submit
a single solution to the crypto-puzzle (see Section 6.3.4);

• the MiningCompetitors instead can submit up to m + 1 solutions, where
m is the number of time-slots assigned to them during epoch h. In fact
they can submit a solution for each block they create (competing individ-
ually during the time-slot preceding the one in which they have to create
the block) and, if m < mmax,h+2, they can also compete as SimpleCom-
petitors. The extra solutions are tied to the blocks the MinerCompetitor
creates, i.e. they are considered only if the blocks are valid and included
in the final ShardChain.

The competition is designed to limit the waste of computational resources and
peaks of consumption. Moreover the MiningCompetitors’ additional compe-
tition rewards effective and honest Miners with more chances of remaining a
Miner, and the potential of receiving incrementally more slots, with a (capped)
positive feedback mechanism.

6.3.4 Crypto-Puzzle

When a Competitor partakes in a PoW competition, it tries to find the best
possible solution to a crypto-puzzle. Specifically, it tries to find a string nonce

such that the Hamming distance between a given string target and the digest
H(target′∥nonce) is as small as possible, where target′ is related to target,
and H is a computationally-expensive pseudo-random function. The strings
target and target′ are tied to three elements:

• the SynchroBlock Syhj that marks the start of the time-slot in which the
competition is supposed to take place, to prevent jump starts;

• the secret key x corresponding to one of the one-time LSAGSS public keys
communicated with the enrollment transaction, to tie the competition
to the competitor (preventing the sharing of solutions), and verify the
correctness of the solution submission;

• a random string K chosen by the competitor, to mask the targets and
avoid de-anonymization of solutions via brute-force.

Let m be the number of time-slots of epoch h assigned to a Competitor, then
the value of these target strings is defined slightly differently for SimpleCom-
petitors (for which m = 0), general MiningCompetitors, and special corner cases
of MiningCompetitors:

• for SimpleCompetitors that compete in the penultimate time-slot of epoch
h the targets are defined as:

target′ = target = H(Syheh−2∥xm+1∥K); (4)

• for a MiningCompetitor that is scheduled to produce m ShardBlocks in
non-consecutive time-slots {j1, . . . jm} (i.e. |ji−ji′ | > 1 ∀i, i′ ∈ {1, . . . ,m})

6 CONSENSUS 23

the m competitions are independent and performed during the time-slot
ji − 1 with targets:

target′i = targeti = H(Syhji−2∥xi∥Ki), (5)

for i ∈ {1, . . . ,m}, where each Ki is chosen uniformly at random;

• for a MiningCompetitor that is scheduled to produce v ≥ 2 ShardBlocks
in consecutive time-slots {j, . . . , j + v − 1}, to avoid a split of resources
between the PoW and smart-contract/transaction execution the competi-
tion takes place only during time-slot j− 1, but produces v solutions. For
i ∈ {1, . . . , v}, the competitor chooses uniformly at random Ki and sets:

targeti = H(Syhj−2∥xi∥Ki), (6)

and:
target′i = target′ = target1∥ . . . ∥targetv. (7)

Note that with these definitions, given a candidate solution nonce, the
value H(target′∥nonce) can be computed just once and then compared
to the v targets target1, . . . , targetv to see if some of the distances are
good enough. Given that the cost of computing a distance is almost
negligible compared to the cost of evaluating H, this approach allows to
compress v competitions in a single time-slot, and the small disadvantage
may be seen as a compensation for the reduced computational cost. In
any case the competitors cannot directly influence slot assignation, and
the probability of having v consecutive slots is low and decreases rapidly
as v grows.

• for a MiningCompetitor that is scheduled to produce the ShardBlocks in
the time-slot eh−1 (the same time-slot when the Simple Competition takes
place) or in the time-slot eh (and therefore its Mining Competition should
take place in the same time-slot as the Simple Competition), there is a
special case to improve fairness. If this Competitor can compete also in the
Simple Competition, then the two competitions are joined and take place
during the same time-slot j of the competition for the block eh − 1 (i.e.
j = eh−2 if the very same MiningCompetitor is not the Miner for the time-
slot eh − 2) or eh, and proceeds with the same method of the competition
for multiple consecutive time-slots, counting the Simple Competition as an
extra consecutive time-slot. Therefore it selects a further random string
K∗, computes the extra target target∗ = H(Syhj ∥xm+1∥K∗), and modifies
target′ := target′∥target∗ (note that this value of target′ is used both
for the Mining and Simple Competition).

Of course if a MiningCompetitor has both consecutive and non-consecutive time-
slots, it partakes in each PoW competition with the appropriate rules, ordering
the competitions with the chronological order of the time-slots they correspond
to (i.e. in the i-th competition the Competitor uses the private key xi to com-
pute targeti and target′i).

6 CONSENSUS 24

6.3.5 Solution Submission and Commitment

The solutions found by a competitor have to be sent to the SynchroNodes in
the last time-slot of the epoch to be included in the ranking. A solution is sent
anonymously as the tuple:

s = (σ, d, nonce, ρ), (8)

where σ is the shard assigned to the Competitor, d is the achieved distance, and
ρ is a LSAGSS signature on σ∥d∥nonce. The signature ρ is computed with the
secret key x associated to the solution (i.e. used to compute the targets) and a
group of one-time public keys chosen randomly from those communicated by the
competitors assigned to the same shard σ (these public keys can be found in the
the enrollment transactions submitted during epoch h− 2), obviously including
the public key P corresponding to x. Note that ρ includes an identification
value I = IDgen(x, paramh) that exposes multiple usage in signatures of the
same key, thus assuring that only one solution may be submitted with each
public key communicated with the enrollment transaction, but does not reveal
which public key of the group has actually signed the submission, maintaining
anonymity.

Example 3. Reprising Example 2, let B and H̃ be respectively the base point
and the hash function defined by param′, then IDgen(x, param′) = xH̃(xB).

It is important to notice that, even if a TokenHolder could theoretically
send all solutions at once, it is advisable to send them separately, in order to
preserve the privacy. For the same reason MiningCompetitors should not send
their solutions right after they have computed them.

The PoW competitions are supposed to last for the duration of one time-slot.
For the Simple Competition this is given from the fact that the targets cannot
be computed until the SynchroBlock Syheh−2 has been published marking the
start of time-slot eh− 1, and the solutions must be communicated in time to be
included in the EpochBlock Eh that is computed during time-slot eh. For the
Mining Competition this property is achieved by having the MiningCompetitors
to include in the ShardBlock they create in the time-slot j a commitment to the
solution found in the competition that took place during the time-slot j − 1:

• if the solution is single (i.e. for the case of non-consecutive time-slots) the
commitment is:

c = H(nonce∥K), (9)

where K is the same used to compute the target;

• if the MiningCompetitor is scheduled to produce v consecutive Shard-
Blocks starting from the time-slot j, then it has computed v solutions
during the time-slot j − 1, so it computes the commitments as:

ci =


H(noncev−1∥Kv−1)∥H(noncev∥Kv) i = v

H(noncei−1∥Ki−1)∥H(ci+1) 1 < i < v

H(c2) i = 1

(10)

and includes the commitment ci in the block created in the time-slot
j + i − 1. Note that c1 references all of the solutions, but has the same

6 CONSENSUS 25

format (i.e. single hash digest) of a single commitment, this means that
all solutions must be computed before c1, but it is not disclosed that the
following ShardBlock will be produced by the same Miner. Note also that
successive commitments have the same format (i.e. concatenation of two
hash digests), so it is not disclosed whether the sequence of consecutive
time-slots assigned to the same Miner is over or not. Finally note that from
these commitments it is possible to extract all of the single commitments
as in Eq. (9), but the i-th solution is included in the (i+1)-th block (except
for the last one), so the (i+1)-th block must be valid in order to the i-th
solution to be accepted.

• a MiningCompetitor assigned to the time-slot j, with j = eh−1 or j = eh,
has to include the commitment c∗ to the extra solution that computes
instead of competing in the Simple Competition. This extra commitment
c∗ is simply appended to the regular commitment included in the block j
(computed as explained above), and is computed as follows:

– if the MiningCompetitor has already (counting the commitment in
the block j) committed to the maximum number of solutions allowed
(mmax,h+2) then c∗ is simply the empty string;

– if j = eh − 1 and the MiningCompetitor is not entitled to partake in
the Simple Competition because it will make the mmax,h+2-th com-
mitment in the following block, then c∗ = H(K) where K is the same
random string used in the target (and commitment) of the solution
included in the block eh − 1;

– if the MiningCompetitor is entitled to partake in the Simple Compe-
tition then c∗ = H(nonce∗,K∗) as for single solutions.

In the EpochBlock Eh−1, published at the end of time-slot eh−1 of epoch
h− 1, SynchroNodes fix the number Nh+2 of shards in epoch h+2, while in the
EpochBlock Eh−2, they fixed e′h+2, a target value for eh+2, that is the number of
time-slots in epoch h+2 (this value is finalized at the end of epoch h, given the
results of the PoS competition, see Section 6.4.1). Having received all the valid
solution submissions, the SynchroNodes publish in the EpochBlock Eh a table
with the eh+2 best submissions for every shard (overall Nh+2 · eh+2 submissions
are chosen). Fixed a shard σ, a solution s1 = (σ, d1, nonce1, ρ1) is better (and
thus ranked higher) than another solution s2 = (σ, d2, nonce2, ρ2) if:

(d1 < d2)

∨ ((d1 = d2) ∧ (nonce1 < nonce2)) (11)

∨ ((d1 = d2) ∧ (nonce1 = nonce2) ∧ (ρ1 < ρ2))

where strings are compared using the lexicographic order. Each solution in-
cluded in the table gives the right to create a ShardBlock in the corresponding
shard during the epoch h+2. The actual time-slot in which this block must be
created is determined by the output of a pseudo-random function (specified in
EpochBlock Eh−2) with an input that depends on Eh, effectively shuffling the
order.

For every shard, the SynchroNodes that create the EpochBlock are rewarded
proportionally to the goodness of the worst solution that gets a block in that

6 CONSENSUS 26

shard, thus SynchroNodes are incentivized to include the best solutions avail-
able.

6.3.6 Time-Slot Claiming and Enrollment Refunds

The Competitors that have one or more solutions included in Eh become Miners
in epoch h + 2. Note that Competitors can verify if one of their solutions has
won a block, but from a solution it is impossible to tell who submitted it. Miners
know well in advance when they will have to produce a ShardBlock, so they can
prepare themselves.

When a Miner produces a ShardBlock, it must include in the block a proof
that it was indeed the Miner that submitted the solution that was assigned to
that time-slot in that shard. This proof is the pair:

(x,K), (12)

where x and K are the same ones used to compute the targets of the solution.
The LSAGSS one-time private key x is used to compute the corresponding

public key P = PKgen(x, param), to check that the Miner paid an enrollment
transaction that announced P and was assigned to the shard σ, and finally to
check that the value I = IDgen(x, param) of the LSAGSS signature ρ used to
authenticate the solution is correct.

Then it is checked whether the Miner produced ShardBlocks in epoch h, and
using x, K, and the appropriate Syhj (see Section 6.3.4 for the various cases)
it is possible to compute target and target′. Note that Miners that were
MiningCompetitors have multiple candidates for Syhj , so they are encouraged to
communicate off-chain which is the correct one, even if it is possible to find it by
trial and error. The targets’ values are then used to check that the distance d
included in the solution is correct. Finally, K is used to check the correctness of
the commitment, comparing the value ofH(nonce∥K) to the one included in the
prescribed ShardBlock. Note that this check is not executed for most solutions
of the Simple Competition (i.e. those not computed by the miners active in the
last two time-slots of epoch h), since they have not been committed in a block,
but for these solutions it is checked that the Competitor was allowed to submit
that solution in the Simple Competition. In particular it is checked that the
Competitor did not produce the block Shhσ,eh−1 or the block Shhσ,eh , and that no
other solution for the simple competition has already been claimed by the same
Competitor in the epoch h+ 2.

In the EpochBlock Eh−4 are specified the refund mechanisms: starting from
the epoch h + 3 the Competitors are refunded of the QDTs they paid with
their enrollment transactions. These refunds are carried on considering sepa-
rately each fraction of Mimin

mmax,h+2
QDTs corresponding to one individual public

key announced with the enrollment transaction:

• the keys whose private counterpart did not produce a winning solution (i.e.
P = PKgen(x, param) such that x has not been used to sign the submission
of a solution included in Eh) are refunded after the Competitor discloses
x, so it is possible to check that indeed that key was not effective (checking
that P = PKgen(x, param) and that I = IDgen(x, param) is not present
in Eh);

6 CONSENSUS 27

• the keys whose private counterpart did produce a winning solution and
the corresponding ShardBlock has been correctly created and finalized,
can be refunded after the block becomes final (i.e. it is considered valid
and supposed to remain valid in the future, see Section 6.3.7). Note that
the corresponding private key x is disclosed in this case too;

• the keys whose private counterpart did produce a winning solution but
the corresponding ShardBlock has not been created or finalized, can be
refunded not before epoch h + 4 if the Competitor discloses x, so it is
possible to check that the submission was valid and that the Competitor
was entitled to submit that solution.

The refund policy incentivizes honest behaviour in the submission of solu-
tions, where Competitors could potentially lie about the distance achieved d to
be included among the winners. In this case, however, they could not actually
claim the time-slot and create the ShardBlock since they cannot provide a cor-
rect proof. This would create a gap in the block creation and deprive an honest
Competitor of its chance to become Miner, so this malicious behaviour may
be punished with the seizure of part of the QDTs pawned with the enrollment
transaction.

6.3.7 ShardBlock Validity and Finality

A ShardBlock is considered valid if:

1. it is hash-linked by a SynchroBlock (this implies timing validation)

2. its Miner is authorized;

3. it is formally correct (this implies that the hash-links are admissible);

4. it is semantically correct (the transactions included are valid and properly
accounted for, the smart-contract executions are correct, the hash-links
point to valid blocks);

5. it is finalized by the MasterChain or included in the oldest unresolved
branch (see Definition 5).

A ShardBlock is finalized by the MasterChain when there is a MasterBlock that
hash-links it or one of its descendants and this MasterBlock is final (see Sec-
tion 6.4.2).

Let Mahi be the MasterBlock created in the i-th time-slot of epoch h, and
Shhσ,j the ShardBlock on the ShardChain σ created in the j-th time-slot of epoch
h.

A ShardBlock Shhσ,i should hash-link the most recent valid ShardBlock on
the same shard and the most recent final MasterBlock (see Section 6.4.2), so its
hash-links are admissible if:

• there are exactly one hash-link to a ShardBlock on the same shard, one to
a MasterBlock, one to the previous SynchroBlock, and no other hash-links;

• let Shh
′

σ,i′ be the ShardBlock hash-linked by Shhσ,i, then:

(h′ < h) ∨ ((h′ = h) ∧ (i′ < i)) ; (13)

6 CONSENSUS 28

• let Mah
∗

i∗ be the MasterBlock hash-linked by Shhσ,i, then:

(h∗ < h) ∨ ((h∗ = h) ∧ (i∗ < i)) ; (14)

• let Shĥσ,̂ı be the ShardBlock on the shard σ hash-linked by Mah
∗

i∗ , then

Shĥσ,̂ı is an ancestor of Shh
′

σ,i′ ;

• let Mah̃ı̃ be the MasterBlock hash-linked by Shh
′

σ,i′ , then Mah̃ı̃ is an ancestor

of Mah
∗

i∗ ;

The weight of a ShardBlock is defined as:

w(Shhσ,j) =
ασ,h

d

∑
f∈Shhσ,j

f, (15)

where ασ,h is a parameter defined in Eh−1 (chosen to keep the weight of blocks
as stable as possible), f represents the fee of a transaction contained in the
block Shhσ,j and d is the distance from the target of the solution that allowed
the Miner to produce that ShardBlock.

The EpochBlock Eh−1 specifies the value of two parameters lh and wh that
regulate whether a ShardBlock Shhσ,j is finalizable by a MasterBlock:

• lh ensures that the ShardBlock is sufficiently old, in fact it must have been
created at least lh time-slots before the MasterBlock;

• wh ensures that disputes in a branch are resolved, in fact the ShardBlock
must belong to an unresolved branch that is sufficiently heavier than all
other unresolved branches in the shard:

Shhσ,j ∈ Γ∗ : w(Γ∗) > wh +w(Γ) = wh +
∑
B∈Γ

w(B) ∀Γ ∈ σ,Γ ̸= Γ∗ (16)

The values of lh and wh are chosen in a way that allows the honest Miners,
in case of attack, to overcome the attacker’s branch and not to be afraid to
hash-link the correct block on the older branch, even if that branch is shorter.

Once the consensus between Miners is reached, the MasterNodes can make
up the time that might have been lost and finalize more than one ShardBlock
at once by hash-linking a non-immediate descendant of the last finalized Shard-
Block.

6.4 MasterChain Consensus

The consensus on the MasterChain is reached through a Proof of Stake mecha-
nism, where the TokenHolders elect the MasterNodes considered most efficient,
trustworthy, and reliable.

6.4.1 Proof of Stake for MasterNodes in the MasterChain

The MasterNodes are selected after a PoS competition. During epoch h − 2
every TokenHolder that aims to become a MasterNode during epoch h + 3
submits a candidacy transaction of Mamin QDTs to a special account called

6 CONSENSUS 29

stake account that is linked to its address and accumulates the Stake supporting
this Candidate. These candidacy transactions should contextually specify two
public keys to be used in the SynchroChain consensus of epoch h + 3: one for
the unique-signature algorithm and one for the aggregable-signature algorithm.

Then, during epoch h every TokenHolder can support one or more Candi-
dates by sending some QDTs on their stake accounts. These TokenHolders will
be compensated with a share of the reward that the Candidate will earn if it
becomes a MasterNode. The share given to a TokenHolder is proportional to
the amount of stake it contributed in support of the Candidate, in relation to
the total stake accumulated by the Candidate itself.

At the end of epoch h, it is possible to compute the final ranking: from M1,
the Candidate that accumulated the most stake (that amounts to A1 QDTs),
down to Mn, the Candidate who accumulated the least stake (that amounts to
An QDTs).

Let nmax,h+3 and nmin,h+3 be respectively the maximum and minimum num-
ber of MasterBlocks that a MasterNode might create in epoch h + 3 and e′h+3

the target value for the number of time-slots in epoch h + 3, these values are
published in the EpochBlock Eh−1. Then anyone can compute the number of
time-slots for MasterBlock creation assigned to each Candidate with the follow-
ing procedure:

1. to M1 are assigned k1 = nmax,h+3 time-slots in epoch h+3. Each Master-

Block Mah+3
j that M1 will create in one of these slots will have weight:

w
(
Mah+3

j

)
= w1 =

A1

k1
; (17)

2. proceeding in order for i = 2, . . . , n, to Mi are assigned ki time-slots with:

ki =

{
max

{
nmin,h+3,mink

{
Ai

k ≤ Ai−1

ki−1

}}
if

∑i
j=1 kj ≤ e′h+3

0 otherwise
(18)

Again, each MasterBlock Mah+3
j that Mi will create in one of these slots

will have weight:

w
(
Mah+3

j

)
= wi =

Ai

ki
. (19)

Consequentially the actual number of time-slots in epoch h+ 3 is:

eh+3 =

i∑
j=1

ki. (20)

As in the time-slot assignation in the ShardChains, the actual time-slot in
which this block must be created is determined by the output of a pseudo-
random function with an input that depends on Eh, effectively shuffling the
order.

Note that a simple signature is enough for a TokenHolder to prove that it is
the rightful MasterNode in a given time-slot, since the slot allocation is publicly
computable.

In the EpochBlock Eh−3 are specified the refund mechanisms: starting from
the epoch h + 4 the stake of each Candidate may be refunded to the original

6 CONSENSUS 30

supporters (including the Candidate themselves), starting from the Candidates
to which no time-slot has been assigned, then proceeding with a fraction 1

ki
for

each MasterBlock produced by Mi that becomes final (i.e. this fraction of the
original supporting transaction is refunded sending to each supporter of Mi a
part proportional to its contribution to Mi’s stake). The remaining stake of
Mi, that amounts to d

ki
Ai QDTs where d is the number of time-slots of epoch

h + 3 that were assigned to Mi but during which it failed to produce a block
considered valid by the consensus, is subject to a punitive treatment. This
punishment might be the seizure and/or the delay of the refund of the entirety
or part of this remaining stake.

6.4.2 MasterBlock Validity and Finality

A MasterBlock is considered valid if:

1. it is hash-linked by a SynchroBlock (this implies timing validation, see Sec-
tion 6.2);

2. its MasterNode is authorized;

3. it is formally correct (this implies that the hash-links are admissible);

4. it is semantically correct (the global state is correctly computed, it hash-
links only finalizable ShardBlocks);

5. it is final or included in the most ancient unresolved branch (see Defini-
tion 5).

A MasterBlock Mahi should hash-link the most recent finalizable ShardBlock
(see Section 6.3.7) on each ShardChain and the most recent valid MasterBlock
(see Section 6.4.2), so its hash-links are admissible if:

• there are exactly one hash-link to a ShardBlock from each ShardChain,
one to a MasterBlock, one to the previous SynchroBlock, and no other
hash-links;

• let Mah
′

i′ be the MasterBlock hash-linked by Mahi , then:

(h′ < h) ∨ ((h′ = h) ∧ (i′ < i)) ; (21)

• let Shhσ
σ,iσ

be the ShardBlock on the shard σ hash-linked by Mahi , then:

(hσ < h) ∨ ((hσ = h) ∧ (iσ < i)) ∀σ; (22)

• let Maĥσ

ı̂σ
be the MasterBlock hash-linked by Shhσ

σ,iσ
, then Maĥσ

ı̂σ
is an an-

cestor of Mah
′

i′ for every σ;

• let Shh̃σ

σ,̃ıσ
be the ShardBlock on the shard σ hash-linked by Mah

′

i′ , then

Shh̃σ

σ,̃ıσ
is an ancestor of Shhσ

σ,iσ
for every σ;

Simply put, the blocks that are indirectly hash-linked cannot be more recent
than the blocks that are directly hash-linked.

Similarly to the case of the ShardChains, the EpochBlock Eh−1 also specifies
the value of two parameters l′h and w′

h that regulate whether a MasterBlock Mahj
may be considered final:

7 QUADRANS TOKENS AND QUADRANS COINS 31

• l′h ensures that the MasterBlock is sufficiently old, i.e. at least l′h time-slots
have passed since the MasterBlock’s creation;

• w′
h ensures that disputes in a branch are resolved, in fact the MasterBlock

must belong to an unresolved branch that is sufficiently heavier than all
other unresolved branches in the MasterChain:

Mahj ∈ Γ∗ : w(Γ∗) > w′
h + w(Γ) = w′

h +
∑
B∈Γ

w(B) ∀Γ ̸= Γ∗ (23)

The values of l′h and w′
h are chosen in a way that allows the honest Master-

Nodes, in case of attack, to overcome the attacker’s branch and not to be afraid
to hash-link the correct block on the older branch, even if that branch is shorter.

7 Quadrans Tokens and Quadrans Coins

The Quadrans Blockchain handles two kind of currencies: Quadrans Tokens
(QDTs) and Quadrans Coins (QDCs).

7.1 Quadrans Tokens

A total of 600 Million QDTs are created once in the initialisation blocks of the
Quadrans Blockchain. Details on the genesis block are decided by [29].
A TokenHolder with at least 1.000 QDTs can participate in PoW competitions
to become a Miner (see Sections 6.3.1). A TokenHolder with at lease 100.000
participate in PoS competitions to become a MasterNode (see Section 6.4.1).
Another use of QDTs is the payment for the creation of new Smart Contracts,
which will be decided according to the [29]. (see Section 8).
Finally, a TokenHolder earns QDCs through coinbase transactions, proportion-
ally to the quantity of owned QDTs. This proportions will be decided according
to the [29].

7.2 Quadrans Coins

The primary use of the QDCs is to provide gas to pay for Smart Contracts’
execution (see Section 8). New QDCs are minted by MasterNodes through a
process involving both the PoS competition and the collaboration of Miners
working on ShardBlocks.
QDCs’ inflation is set to be large enough to discourage hoarding and financial
speculation5.

7.3 Minting new QDCs

Coinbase transactions are included in ShardBlocks, according to the address of
the TokenHolder that earns QDCs according to the rules set by [29].

To the creation of a MasterBlock it corresponds a coinbase transaction, con-
taining the newly minted QDCs corresponding to the creation of MasterBlock,
to be distributed6 between:

5The quantity of minted QDCs may increases every year by a quantity according to [29].
6The proportion of QDCs for the MasterNode, the Miner and the TokenHolder will be

decided according to [29]

8 SMART CONTRACTS 32

• the MasterNode α that has created the MasterBlock,

• the TokenHolders that have bet a stake for the election of α;

• the Miner that has included the coinbase transaction in the ShardBlock,

• all TokenHolders, proportionally to the quantity of QDTs owned, including
their frozen QDTs used in the PoS competitions.

Coinbase transactions are managed by Miners not before the finalization of
the corresponding MasterBlocks.

8 Smart Contracts

In addition to kernel smart contracts Quadrans encourages the development of
a rich ecosystem of user smart contracts that can be added to the Quadrans
Blockchain through dedicated transactions. The cost of the deployment of a new
contract is twofold: the gas price is paid in QDCs, while the right to create a
new contract is paid using QDTs. These QDTs are moved to a special account,
known as Enhanced Account, managed by the Quadrans Foundation.

Smart Contracts are divided into three categories, according to their gas
cost:

• Standard Contracts, whose gas cost is paid by the user requesting the
execution;

• Autonomous Contracts, whose gas cost is paid (partially or in toto) by a
reserve of QDCs held by the contract itself;

• Favoured Contracts, whose gas cost is paid only partially by the user and
the remaining cost is paid using the Enhanced Account.

9 Future Works

The development of the Quadrans Blockchain and its ecosystem is still in
progress, and a continuous effort is expected in the future in order to keep
the technology always up-to-date.

In this section we delineate the topics that are expected to be considered in
the near future.

9.1 Developments on Addresses

Currently, an address corresponds to a single public key, and a signature ver-
ifiable with that key is sufficient to authorise any operation on behalf of this
address. We refer to these as simple addresses.

Here we discuss some possible developments on this topic.

REFERENCES 33

9.1.1 Authorised Keys

The first and obvious evolution of simple addresses should be addresses that
natively support multi-signatures and even more complex access policies. A
direction could be to define addresses embedding information about the pub-
lic keys whose corresponding private keys can withdraw from these addresses’
balances. Additionally, more sophisticated addresses may specify various public
keys (even of different signature protocols) and a policy that indicates which
signatures are required to authorise transactions. For example an address could
be associated to a public key for a post-quantum algorithm plus three other
ECDSA keys and specify that authorisation may come through a single post-
quantum signature or at least two out of three ECDSA signatures.

9.1.2 Common Name

Another possible evolution of Quadrans addresses could be the embedding of
common names for their users. This feature is useful to avoid duplicated in-
sertions of the same public key to the blockchain: once an address has been
disclosed, all information (including the public key and the common name) are
known to the community, hence further transactions can refer to address and
common name only, without the need of specifying the entire public key. We
remark that common names could also be not fully human-readable: for exam-
ple, they can also encode IOT devices IDs in a way that only the owner may
recognise and identify them, or even be random strings if some users wish to
preserve their pseudo-anonymity.

References

[1] Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted
Edwards curves. In: International Conference on Cryptology in Africa. pp.
389–405. Springer (2008)

[2] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed
high-security signatures. Journal of Cryptographic Engineering 2(2), 77–89
(2012)

[3] Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J.,
Schwabe, P.: The SPHINCS+ signature framework. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2129–2146 (2019)

[4] Bernstein, D.J., Josefsson, S., Lange, T., Schwabe, P., Yang, B.Y.: EdDSA
for more curves. Cryptology ePrint Archive 2015 (2015), https://eprint.
iacr.org/2015/677

[5] Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and
Reload – A Cache Attack on the BLISS Lattice-Based Signature Scheme.
In: International Conference on Cryptographic Hardware and Embedded
Systems. pp. 323–345. Springer (2016)

https://eprint.iacr.org/2015/677
https://eprint.iacr.org/2015/677

REFERENCES 34

[6] Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure
signature scheme based on minimal security assumptions. In: International
Workshop on Post-Quantum Cryptography. pp. 117–129. Springer (2011)

[7] Buterin, V.: Ethereum: a next generation smart contract and decentral-
ized application platform. https://github.com/ethereum/wiki/wiki/

White-Paper (2013)

[8] Casanova, A., Faugere, J.C., Macario-Rat, G., Patarin, J., Per-
ret, L., Ryckeghem, J.: GeMSS: a great multivariate short signa-
ture. Submission to the NIST’s post-quantum cryptography standardiza-
tion process (2017), https://www-polsys.lip6.fr/Links/NIST/GeMSS_
specification_round2.pdf

[9] Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI.
vol. 99, pp. 173–186 (1999)

[10] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rech-
berger, C., Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge
and signatures from symmetric-key primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. pp.
1825–1842 (2017)

[11] Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foun-
dations, design landscape and research directions. CoRR abs/1608.00771
(2016)

[12] Costa, D., Fiori, F., Milan, P., Sala, M., Vitale, A., Vitale, M.:
Quadrans whitepaper (2019), https://quadrans.io/content/files/

quadrans-white-paper-rev01.pdf

[13] Costa, D., Fiori, F., Sala, M., Vitale, A., Vitale, M.: In-
troducing Quadrans (2019), https://quadrans.io/content/files/

quadrans-light-paper-en.pdf

[14] Di Chiano, N., Longo, R., Meneghetti, A., Mula, M., Tognolini, G.: Quad-
rans’s Cryptographic Kernel and Primitives Encoding (2021)

[15] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signa-
ture scheme. In: International Conference on Applied Cryptography and
Network Security. pp. 164–175. Springer (2005)

[16] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: Crystals-dilithium: A lattice-based digital signature
scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2018(1), 238–268 (Feb 2018), https://tches.iacr.org/index.
php/TCHES/article/view/839

[17] Flamini, A.: A Byzantine Fault Tolerant Consensus Protocol for Paral-
lel Time-Stamping (2021), https://webapps.unitn.it/Biblioteca/it/
Web/Tesi

[18] Flamini, A., Longo, R., Meneghetti, A.: Cob: a multidimensional byzantine
agreement protocol for asynchronous incomplete networks. arXiv preprint
arXiv:2108.11157 (2021)

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2.pdf
https://quadrans.io/content/files/quadrans-white-paper-rev01.pdf
https://quadrans.io/content/files/quadrans-white-paper-rev01.pdf
https://quadrans.io/content/files/quadrans-light-paper-en.pdf
https://quadrans.io/content/files/quadrans-light-paper-en.pdf
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://webapps.unitn.it/Biblioteca/it/Web/Tesi
https://webapps.unitn.it/Biblioteca/it/Web/Tesi

REFERENCES 35

[19] Flamini, A., Longo, R., Meneghetti, A.: Multidimensional byzantine agree-
ment in a synchronous setting. arXiv preprint arXiv:2105.13487 (2021)

[20] Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin,
T., Prest, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon:
Fast-Fourier lattice-based compact signatures over NTRU. Submission to
the NIST’s post-quantum cryptography standardization process (2018),
https://www.di.ens.fr/~prest/Publications/falcon.pdf

[21] ITU: X.509 : Information technology - open systems interconnection -
the directory: Public-key and attribute certificate frameworks (Oct 2019),
https://www.itu.int/rec/T-REC-X.509-201910-I/en

[22] Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature
algorithm (ECDSA). International Journal of Information Security 1(1),
36–63 (2001)

[23] Meneghetti, A., Parise, T., Sala, M., Taufer, D.: A survey on efficient
parallelization of blockchain-based smart contracts. Annals of Emerging
Technologies in Computing (AETiC) 3(5) (2019)

[24] Meneghetti, A., Sala, M., Taufer, D.: A note on an ECDLP-based pow
model. CEUR Workshop Proceedings Vol-2580 DLT 2020 (2020)

[25] Meneghetti, A., Sala, M., Taufer, D.: A survey on pow-based consensus.
Annals of Emerging Technologies in Computing (AETiC) 4(1) (2020)

[26] Micciancio, D., Walter, M.: Gaussian sampling over the integers: Efficient,
generic, constant-time. In: Annual International Cryptology Conference.
pp. 455–485. Springer (2017)

[27] National Security Agency: Quantum computing and post-
quantum cryptography: Frequently asked questions (Aug 2021),
https://media.defense.gov/2021/Aug/04/2002821837/-1/-1/1/

Quantum_FAQs_20210804.PDF

[28] Patarin, J., Courtois, N., Goubin, L.: Quartz, 128-bit long digital sig-
natures. In: Cryptographers’ Track at the RSA Conference. pp. 282–297.
Springer (2001)

[29] Sala, M., Costa, D., Fiori, F., Crotta, M.: Quadrans Blockchain - Code of
Conduct (2021), https://quadrans.io/f/code-of-conduct

[30] Schmid, M.: ECDSA-application and implementation failures (2015),
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/

Schmid.pdf

[31] Shor, P.W.: Algorithms for quantum computation: discrete logarithms
and factoring. In: Proceedings 35th annual symposium on Foundations of
Computer Science. pp. 124–134. IEEE (1994)

[32] of Standards, N.I., Technology: Post-quantum cryptogra-
phy standardization - post-quantum cryptography, https:

//csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization

https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://media.defense.gov/2021/Aug/04/2002821837/-1/-1/1/Quantum_FAQs_20210804.PDF
https://media.defense.gov/2021/Aug/04/2002821837/-1/-1/1/Quantum_FAQs_20210804.PDF
https://quadrans.io/f/code-of-conduct
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Schmid.pdf
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Schmid.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

	Introduction
	Algorithms and Parameters Flexibility
	Smart Contract Cryptographic Kernel
	Encoding

	Users
	Digital Signatures
	Available Digital Signature Algorithms

	Addresses

	Nodes
	MasterNodes
	SynchroNodes

	Miners

	Chain Structure
	The SynchroChain
	SynchroBlocks
	EpochBlocks

	ShardChains
	ShardBlocks
	Transactions between shards

	The MasterChain
	MasterBlocks

	Consensus
	Definitions
	Blocks Finalization Assumptions

	SynchroChain Consensus
	SynchroNodes Selection
	SynchroBlock Creation and Certificates
	EpochBlocks

	ShardChains Consensus
	Proof of Work for Miners in ShardChains
	Enrollment Transaction and Shard Assignment
	Simple Competition and Mining Competition
	Crypto-Puzzle
	Solution Submission and Commitment
	Time-Slot Claiming and Enrollment Refunds
	ShardBlock Validity and Finality

	MasterChain Consensus
	Proof of Stake for MasterNodes in the MasterChain
	MasterBlock Validity and Finality

	Quadrans Tokens and Quadrans Coins
	Quadrans Tokens
	Quadrans Coins
	Minting new QDCs

	Smart Contracts
	Future Works
	Developments on Addresses
	Authorised Keys
	Common Name

